THE BENEFITS OF HYDRONIC HEATING
THE BENEFITS OF HYDRONIC HEATING
Modern hydronic heating has a lot to offer. The following is a brief description of the key benefits it offers.
Energy Savings
Ideally, a building’s rate of heat loss would not be effected by how that heat is replaced. Experience, however, has shown that otherwise identical buildings can have significantly different rates of heat loss based on the types of heating systems installed. Buildings with hydronic heating systems have consistently shown lower heating energy use than equivalent structures with forced-air heating systems.
A number of factors contribute to this finding. One is that hydronic systems do not effect room air pressure while operating. Small changes in room air pressure occur when the blower of a forced-air heating system is operating. Increased room air pressure often results from the lack of an adequate return air path from the rooms back to the furnace. This condition drives heated air out through every small crack, hole, or other opening in the exterior surfaces of the room. A study that compared several hundred homes, some with central forced-air systems, others with baseboard convectors, found air leakage rates averaged 26% higher and energy usage averaged 40% greater in the homes with forced-air heating.
Another factor affecting building energy use is air temperature stratification; the tendency of warm air to rise toward the ceiling while cool air settles to the floor. In extreme situations the difference in air temperature from floor to ceiling can exceed 20 ºF. Stratification tends to be worsened by high ceilings, poor air circulation, and heating systems that supply air into rooms at high temperatures. Maintaining comfortable air temperatures in the occupied areas of rooms plagued with a high degree of temperature stratification leads to significantly higher air temperatures near the ceiling. The hot air increases heat loss through the ceiling.
Clean Operation
A very common complaint about forced-air heating is its ability to move dust and other airborne pollutants such as pollen and smoke throughout a building. In buildings where air-filtering equipment is either low quality or poorly maintained, dust streaks around ceiling and wall diffusers are often evident. Eventually duct systems require internal cleaning to remove dust and mold that has accumulated over several years of operation.
In contrast, few hydronic systems involve forced-air circulation. Those that do create room air circulation rather than building air circulation. This reduces the dispersal of airborne particles, which is a major benefit in situations where air cleanliness is imperative, such as for people with allergies, or in health care facilities.
Quiet Operation
A properly designed and installed hydronic system can operate with virtually undetectable sound levels in the occupied areas of a home. Modern systems that use constant circulation with variable water temperature minimize expansion noises that can occur when high temperature water is injected directly into a room temperature heat emitter.